Unfolding Latent Tree Structures using 4th Order Tensors

نویسندگان

  • Mariya Ishteva
  • Haesun Park
  • Le Song
چکیده

Discovering the latent structure from many observed variables is an important yet challenging learning task. Existing approaches for discovering latent structures often require the unknown number of hidden states as an input. In this paper, we propose a quartet based approach which is agnostic to this number. The key contribution is a novel rank characterization of the tensor associated with the marginal distribution of a quartet. This characterization allows us to design a nuclear norm based test for resolving quartet relations. We then use the quartet test as a subroutine in a divide-and-conquer algorithm for recovering the latent tree structure. Under mild conditions, the algorithm is consistent and its error probability decays exponentially with increasing sample size. We demonstrate that the proposed approach compares favorably to alternatives. In a real world stock dataset, it also discovers meaningful groupings of variables, and produces a model that fits the data better.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4th Order Symmetric Tensors and Positive ADC Modelling

High Order Cartesian Tensors (HOTs) were introduced in Generalized DTI (GDTI) to overcome the limitations of DTI. HOTs can model the apparent diffusion coefficient (ADC) with greater accuracy than DTI in regions with fiber heterogeneity. Although GDTI HOTs were designed to model positive diffusion, the straightforward least square (LS) estimation of HOTs doesn’t guarantee positivity. In this ch...

متن کامل

Registration of High Angular Resolution Diffusion MRI Images Using 4 th Order Tensors

Registration of Diffusion Weighted (DW)-MRI datasets has been commonly achieved to date in literature by using either scalar or 2nd-order tensorial information. However, scalar or 2nd-order tensors fail to capture complex local tissue structures, such as fiber crossings, and therefore, datasets containing fiber-crossings cannot be registered accurately by using these techniques. In this paper w...

متن کامل

Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI

In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. It is now well known that this 2nd-order approximation fails to approximate complex local tissue structures, such as fibers crossings. In this paper we employ a 4th order symmetric positive semi-definite (P...

متن کامل

A Tucker decomposition process for probabilistic modeling of diffusion magnetic resonance imaging

Diffusion magnetic resonance imaging (dMRI) is an emerging medical technique used for describing water diffusion in an organic tissue. Typically, rank-2 tensors quantify this diffusion. From this quantification, it is possible to calculate relevant scalar measures (i.e. fractional anisotropy and mean diffusivity) employed in clinical diagnosis of neurological diseases. Nonetheless, 2nd-order te...

متن کامل

Tensors and Latent Variable Models

In this paper we discuss existing and new connections between latent variable models from machine learning and tensors (multi-way arrays) from multilinear algebra. A few ideas have been developed independently in the two communities. However, there are still many useful but unexplored links and ideas that could be borrowed from one of the communities and used in the other. We will start our dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013